Geometry behind linear programming and basics

1: Solve the following linear program:

$$(LP) \begin{cases} \text{minimize} & x+y\\ \text{s.t.} & x+2y \le 14\\ & 3x-y \ge 0\\ & x-y \le 2, \end{cases}$$

Hint: Plot points (x, y) that satisfy all constraints and then identify the optimal solution among them.

Solution: equations:

$$y \le -\frac{1}{2}x + 7$$

$$y \le 3x$$

$$y \ge x - 2$$

$$x + y = 2$$

$$x + y = 0$$

$$x + y = -4$$

$$x + y = -4$$

Optimum (x, y) = (-1, -3), value of objective function is -4.

Recall that a linear program can be written using a matrix $A \in \mathbb{R}^{m \times n}$ and vectors $\mathbf{b} \in \mathbb{R}^m$ and $\mathbf{c}, \mathbf{x} \in \mathbb{R}^n$ as

$$(LP) \begin{cases} \text{minimize} & \mathbf{c}^T \mathbf{x} \\ \text{s.t.} & A \mathbf{x} \leq \mathbf{b} \end{cases}$$

Basic linear programming definitions:

- feasible solution is vector \mathbf{x} such that $A\mathbf{x} \leq \mathbf{b}$. In other words, a point satisfying all the constraints.
- a set of feasible solutions
- an *optimal solution* is a feasible solution that is maximizing/minimizing the objective function.
- 2: What shape is the set of feasible solutions?

Solution: In the example above, a polygon. In general, polyhedra ("unbounded polytope"). In 2D we could say it is an intersection of halfplanes (halfspaces in xD).

3: What shape is the set of optimal solutions?

Solution: In the example above, it is a point. But it can be also a line. Or a special case, where it can be any feasible point (maybe you just want to know if a feasible solution exists).

4: Construct a linear program that has no feasible solution.

Solution:

$$(LP) \begin{cases} \text{minimize} & x \\ \text{s.t.} & x \le 3 \\ & x \ge 4 \end{cases}$$

5: Construct a linear program that has a feasible solution but does not have an optimal solution.

Solution:

$$(LP) \begin{cases} \text{maximize} & x \\ \text{s.t.} & x \ge 4 \end{cases}$$

6: Construct a linear program that has more than one optimal solution.

Solution:

	minimize	x
(LP)	s.t.	$x \leq 3$
		$y \ge 0$
		$y \leq 2$

Basic geometric definitions (for LP in higher dimension): Suppose we live in \mathbb{R}^d for some $d \in \mathbb{N}$.

- hyperplane is d-1 dimensional subspace $\{\mathbf{x} \in \mathbb{R}^d : \mathbf{a}^T \mathbf{x} = c\}$, where $\mathbf{a} \in \mathbb{R}^d$ and $c \in \mathbb{R}$.
- closed half space is $\{\mathbf{x} \in \mathbb{R}^d : \mathbf{a}^T \mathbf{x} \leq c\}$, where $\mathbf{a} \in \mathbb{R}^d$ and $c \in \mathbb{R}$.
- $C \subseteq \mathbb{R}^d$ is convex if $\forall \mathbf{x}, \mathbf{y} \in C, \forall t \in [0, 1], t\mathbf{x} + (1 t)\mathbf{y} \in C$. (line between \mathbf{x} and \mathbf{y} is in C)

7: Show that the set of feasible solutions to any linear program is a convex set.

Solution: We will show that a closed half space is a convex set and that an intersection of convex sets is also a convex set.

Let $H = {\mathbf{x} \in \mathbb{R}^d : \mathbf{a} \cdot \mathbf{x} \leq c}$ be a halfspace. We show that H is indeed convex by verifying the definition. Let $\mathbf{x}, \mathbf{y} \in H$ and $t \in [0, 1]$.

$$\mathbf{a}^{T}(t\mathbf{x} + (1-t)\mathbf{y}) = t \cdot \mathbf{a}^{T}\mathbf{x} + (1-t)\mathbf{a}^{T}\mathbf{y} \le tc + (1-t)c = c$$

Let C_1 and C_2 be convex sets. Let $\mathbf{x}, \mathbf{y} \in C_1 \cap C_2$ be arbitrary. Since both C_1 and C_2 are convex

$$\forall C \in \{C_1, C_2\} \forall t \in [0, 1], t\mathbf{x} + (1 - t)\mathbf{y} \in C.$$

Hence

$$\forall t \in [0,1], t\mathbf{x} + (1-t)\mathbf{y} \in C_1 \cap C_2.$$

and $C_1 \cap C_2$ is indeed convex.

©€\$© by Bernard Lidický